Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Solution precursor plasma spray (SPPS) can prepare thermal barrier coatings (TBCs) with nanostructures, which can modify the adhesion and wettability of molten silicate environmental deposits (CMAS) on the surface of TBCs, thereby improving the resistance of TBCs to CMAS corrosion. In this study, SPPS layers with micro-nano double scale structures were prepared on the surface of conventional atmospheric plasma spraying (APS) coatings. The effect of process parameters on the micro-nano double scale structures and the wetting and infiltration behavior of molten CMAS on the surface of coatings were investigated. The results show that micron structure is more sensitive to process parameters. Lower precursor viscosity, closer spraying distance, and smoother APS layer are favorable to form more typical and dense micron structures. After covering the SPPS layer, the CMAS wetting diameter is reduced by about 40% and the steady-state contact angle increased up to three times. The reason is that the micro-nano double scale structures can effectively trap air and form an air layer between the coating surface and the molten CMAS. In addition, nano-particles play a more important role in the formation of the air layer, which in turn determines the steady-state wettability properties. While micron structures can influence the time needed to reach the steady state. However, the SPPS layers composed of nano-particles have a very loose structure and weak cohesion, and they degrade and fail rapidly after the infiltration of molten CMAS. Therefore, maintaining the excellent CMAS wetting resistance of the SPPS layers while taking into account their lifetime and reliability has become the focus of further research.

Details

Title
Preparation and CMAS Wettability Investigation of CMAS Corrosion Resistant Protective Layer with Micro-Nano Double Scale Structure
Author
Wang, Yihao 1 ; Xu, Zhenning 2 ; Wang, Weize 1 ; Zhang, Chengcheng 3 ; Yu, Zexin 2 ; Fang, Huanjie 1 ; Yang, Ting 1 

 Key Laboratory of Pressure System and Safety, Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai 200237, China; [email protected] (Y.W.); [email protected] (H.F.); [email protected] (T.Y.) 
 School of Mechanical and Electrical Engineering, Soochow University, Suzhou 215123, China; [email protected] 
 Aero Engine Corporation of China (AECC), Shanghai 200241, China; [email protected] 
First page
648
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20796412
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670140065
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.