Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The Rao’s score, Wald and likelihood ratio tests are the most common procedures for testing hypotheses in parametric models. None of the three test statistics is uniformly superior to the other two in relation with the power function, and moreover, they are first-order equivalent and asymptotically optimal. Conversely, these three classical tests present serious robustness problems, as they are based on the maximum likelihood estimator, which is highly non-robust. To overcome this drawback, some test statistics have been introduced in the literature based on robust estimators, such as robust generalized Wald-type and Rao-type tests based on minimum divergence estimators. In this paper, restricted minimum Rényi’s pseudodistance estimators are defined, and their asymptotic distribution and influence function are derived. Further, robust Rao-type and divergence-based tests based on minimum Rényi’s pseudodistance and restricted minimum Rényi’s pseudodistance estimators are considered, and the asymptotic properties of the new families of tests statistics are obtained. Finally, the robustness of the proposed estimators and test statistics is empirically examined through a simulation study, and illustrative applications in real-life data are analyzed.

Details

Title
Robust Test Statistics Based on Restricted Minimum Rényi’s Pseudodistance Estimators
Author
Jaenada, María  VIAFID ORCID Logo  ; Miranda, Pedro  VIAFID ORCID Logo  ; Pardo, Leandro  VIAFID ORCID Logo 
First page
616
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
10994300
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670145815
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.