Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Two-dimensional (2D) V2C MXene has fascinating potential for use as electrodes in high-energy-density supercapacitors because of its excellent electrical conductivity and large specific surface area. However, it is not feasible to synthesize V2C by etching vanadium carbon aluminide (V2AlC) with hydrofluoric acid, which is commonly used for preparing other MXenes. In this work, a modified method is developed for synthesizing high-quality 2D V2C. A mixture of sodium fluoride (NaF) and hydrochloric acid (HCl) was used as the etching agent, where V2AlC can be gently etched by a hydrothermal reactor-assisted method. As electrode materials for supercapacitors, V2C shows the characteristics of electric double layer capacitance. The electrochemical results show high specific capacitance (223.5 F/g in 1 M Na2SO4 at a current density of 100 mA/g) and good cycling stability (the capacitance retention rate can be maintained at 94.7% after 5000 cycles). This work provides a new method for the synthesis of high-quality V2C for application in related fields.

Details

Title
Synthesis of High-Quality Two-Dimensional V2C MXene for Supercapacitor Application
Author
Ai, Wangsheng; Zhang, Chunfei; Xia, Lan; He, Miao  VIAFID ORCID Logo  ; Yuan, Jinliang  VIAFID ORCID Logo 
First page
3696
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670147777
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.