Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, power-sharing management control on an AC islanded microgrid is investigated to achieve accurate reactive power sharing. The droop control method is primarily used to manage the active and reactive power sharing among the DGs in the microgrid. However, the line impedance mismatch causes unbalanced reactive power sharing. As a solution a consensus-based adaptive virtual impedance controller is proposed, where the consensus algorithm is used to set the reactive power mismatch; then a virtual impedance correction term is generated through a proportional-integral controller to eliminate the line impedance mismatch. Thus, reactive power sharing is achieved without knowledge of the line impedances or using a central controller. Moreover, the consensus algorithm is used to restore the AC bus voltage to the nominal value by estimating the DGs average voltage using neighbor communication to compensate for the decreased magnitude of the voltage reference. Matlab/Simulink is used to validate the accuracy of reactive power sharing and voltage restauration achievement of the proposed solution through simulation of different scenarios. In addition, a dSPACE DS1104 is used within a developed experimental testbench based on two parallel DGs to validate the effectiveness of the proposed solution in the real world.

Details

Title
Enhanced Reactive Power Sharing and Voltage Restoration Based on Adaptive Virtual Impedance and Consensus Algorithm
Author
Keddar, Mohamed 1 ; Doumbia, Mamadou Lamine 1 ; Belmokhtar, Karim 2 ; Mohamed Della Krachai 3   VIAFID ORCID Logo 

 Department of Electrical and Computer Engineering, Université du Québec à Trois-Rivières, Trois-Rivières, QC G8Z 4M3, Canada; [email protected] 
 Research and Innovation, Nergica, Gaspé, QC G4X 1G2, Canada; [email protected] 
 Department of Electrical Engineering, University of Science and Technology Mohamed Boudiaf, Oran 31000, Algeria; [email protected] 
First page
3480
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670152441
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.