Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Terpene trilactones (TTLs) are the main secondary metabolites in Ginkgo biloba L. with efficacious pharmacological activity. Jasmonate ZIM-domain (JAZ) protein is a key regulatory factor of the JA signaling pathway, which regulates the biosynthesis of secondary metabolites such as terpenes, alkaloids, and flavonoids. In this study, GbJAZ01~GbJAZ11 were identified from the genome data in G. biloba, which contained TIFY-, Jas-, and weakly conserved NT-domains, and the promoters in most of them contained light, hormone, and stress-responsive elements. Phylogenetic analysis divided all JAZ proteins of Arabidopsis thaliana, Oryza sativa, Picea sitchensis, Taxus chinensis, and G. biloba into nine groups, in which GbJAZs belong to Group VI-IX. GbJAZs have similar functional motifs to A. thaliana and O. sativa, but also contain three specific motifs of gymnosperms, indicating that, although gymnosperms and angiosperms have some conservative structures and functions, their evolutionary processes are independent. Expression pattern analysis showed that the expression levels of GbJAZs were significantly up-regulated by MeJA, but the change pattern and amplitude were different, indicating that the function of GbJAZs in response to a JA signal may be different. After ABA and SA treatment, the expression of GbJAZs was up-regulated or inhibited in varying degrees, and different GbJAZs may be involved in the synergistic or antagonistic effects between JA and other hormone signals. The MeJA significantly increased the content of TTLs in G. biloba leaves, which were significantly positively correlated with the expression levels of GbJAZ01, 02, 07, and 11, and negatively correlated with the expression of GbJAZ04. They may play an important role in JA signaling pathways and the interactions between JA and other hormone signals, and participate in the regulation of the biosynthesis of TTLs. Our results provide a reference for the discovery that GbJAZs are involved in JA signaling pathways, and lay a theoretical foundation for analyzing JA signaling pathways to regulate the synthesis of secondary metabolites.

Details

Title
Identification and Analysis of JAZ Gene Family in Ginkgo biloba Reveals Candidate Genes for Biosynthesis of Terpene Trilactones
Author
He, Xiao; Liu, Xiaomeng; Zheng, Jiarui; Ye, Jiabao; Liao, Yongling; Xu, Feng
First page
781
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19994907
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670175710
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.