Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Transcatheter aortic valve replacement (TAVR), as an alternative to open heart surgery, has revolutionized the treatment of severe aortic valve stenosis (AVS), the most common valvular disorder in the elderly. AVS is now considered a form of atherosclerosis and, like the latter, partly of inflammatory origin. Patients with high-grade AVS have a highly disturbed blood flow associated with high levels of shear stress. The immediate reopening of the valve during TAVR leads to a sudden restoration of a normal blood flow hemodynamic. Despite its good prognosis for patients, TAVR remains associated with bleeding or thrombotic postprocedural complications, involving mechanisms that are still poorly understood. Many studies report the close link between blood coagulation and inflammation, termed thromboinflammation, including monocytes as a major actor. The TAVR procedure represents a unique opportunity to study the influence of shear stress on human monocytes, key mediators of inflammation and hemostasis processes. The purpose of this study was to conduct a review of the literature to provide a comprehensive overview of the impact of TAVR on monocyte phenotype and subset repartition and the association of these parameters with the clinical outcomes of patients with severe AVS who underwent TAVR.

Details

Title
Circulating Monocyte Subsets and Transcatheter Aortic Valve Replacement
Author
Lassalle, Fanny  VIAFID ORCID Logo  ; Rosa, Mickael; Staels, Bart  VIAFID ORCID Logo  ; Eric Van Belle; Susen, Sophie; Dupont, Annabelle
First page
5303
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
16616596
e-ISSN
14220067
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670195574
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.