Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Benzotriazole UV stabilizers (BUVs) have gained popularity, due to their absorption properties in the near UV range (200–400 nm). They are used in the technology for manufacturing plastics, protective coatings, and cosmetics, to protect against the destructive influence of UV radiation. These compounds are highly resistant to biological and chemical degradation. As a result of insufficient treatment by sewage treatment plants, they accumulate in the environment and in the tissues of living organisms. BUVs have adverse effects on living organisms. This work presents the use of peracetic acid in combination with d-electron metal ions (Fe2+, Co2+), for the chemical oxidation of five UV filters from the benzotriazole group: 2-(2-hydroxy-5-methylphenyl)benzotriazole (UV-P), 2-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)-4-methylphenol (UV-326), 2,4-di-tert-butyl-6-(5-chloro-2H-benzotriazol-2-yl)phenol (UV-327), 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV-328), and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethylbutyl)phenol (UV-329). The oxidation procedure has been optimized based on the design of experiments (DoE) methodology. The oxidation of benzotriazoles follows first order kinetics. The oxidation products of each benzotriazole were investigated, and the oxidation mechanisms of the tested compounds were proposed.

Details

Title
Degradation of Benzotriazole UV Stabilizers in PAA/d-Electron Metal Ions Systems—Removal Kinetics, Products and Mechanism Evaluation
Author
Kiejza, Dariusz 1   VIAFID ORCID Logo  ; Karpińska, Joanna 2   VIAFID ORCID Logo  ; Kotowska, Urszula 2   VIAFID ORCID Logo 

 Doctoral School of Exact and Natural Sciences, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Poland; [email protected] 
 Department of Analytical and Inorganic Chemistry, Faculty of Chemistry, University of Bialystok, Ciołkowskiego 1K St., 15-245 Białystok, Poland; [email protected] 
First page
3349
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14203049
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670332803
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.