Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the launch of Landsat 9 in September 2021, an optimal opportunity for in-flight cross-calibration occurred when Landsat 9 flew underneath Landsat 8 while being moved into its final orbit. Since the two instruments host nearly identical imaging systems, the underfly event offered ideal cross-calibration conditions. The purpose of this work was to use the underfly imagery collected by the instruments to estimate cross-calibration parameters for Landsat 9 for a calibration update scheduled at the end of the on-orbit initial verification (OIV) period. Three types of uncertainty were considered: geometric, spectral, and angular (bidirectional reflectance distribution function—BRDF). Differences caused by geometric uncertainty were found to be negligible for this application. Spectral uncertainty was found to be minimal except for the green band when viewing vegetative targets. BRDF models derived from the MODIS BRDF product indicated substantial error could occur and required development of a mitigating methodology. With these three contributions of uncertainty properly addressed, it was estimated that the total cross-calibration uncertainty for underfly data could be kept under 1%. The data collected during the underfly were filtered to remove outliers based on uncertainty analysis. These data were used to calculate the TOA reflectance and radiance cross-calibration values for each spectral band by taking the ratio of Landsat 8 average pixel values to Landsat 9. Initial results of this approach indicated the cross-calibration may be as accurate as 0.5% in reflectance space and 1.0% in radiance space. The initial results developed in this study were used to refine the cross-calibration of Landsat 9 to Landsat 8 at the end of the OIV period.

Details

Title
Initial Cross-Calibration of Landsat 8 and Landsat 9 Using the Simultaneous Underfly Event
Author
Gross, Garrison; Helder, Dennis; Begeman, Christopher; Leigh, Larry; Kaewmanee, Morakot; Shah, Ramita
First page
2418
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670363023
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.