Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In recent years, with the development of deep learning, semantic segmentation for remote sensing images has gradually become a hot issue in computer vision. However, segmentation for multicategory targets is still a difficult problem. To address the issues regarding poor precision and multiple scales in different categories, we propose a UNet, based on multi-attention (MA-UNet). Specifically, we propose a residual encoder, based on a simple attention module, to improve the extraction capability of the backbone for fine-grained features. By using multi-head self-attention for the lowest level feature, the semantic representation of the given feature map is reconstructed, further implementing fine-grained segmentation for different categories of pixels. Then, to address the problem of multiple scales in different categories, we increase the number of down-sampling to subdivide the feature sizes of the target at different scales, and use channel attention and spatial attention in different feature fusion stages, to better fuse the feature information of the target at different scales. We conducted experiments on the WHDLD datasets and DLRSD datasets. The results show that, with multiple visual attention feature enhancements, our method achieves 63.94% mean intersection over union (IOU) on the WHDLD datasets; this result is 4.27% higher than that of UNet, and on the DLRSD datasets, the mean IOU of our methods improves UNet’s 56.17% to 61.90%, while exceeding those of other advanced methods.

Details

Title
A Multi-Attention UNet for Semantic Segmentation in Remote Sensing Images
Author
Sun, Yu 1 ; Bi, Fukun 1 ; Gao, Yangte 2 ; Chen, Liang 3 ; Feng, Suting 1 

 School of Electronics and Communications Engineering, North China University of Technology, Beijing 100144, China; [email protected] (Y.S.); [email protected] (S.F.) 
 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; [email protected] (Y.G.); [email protected] (L.C.); Qian Xuesen Laboratory of Space Technology, China Academy of Space Technology, Beijing 100094, China 
 School of Information and Electronics, Beijing Institute of Technology, Beijing 100081, China; [email protected] (Y.G.); [email protected] (L.C.) 
First page
906
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20738994
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670454023
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.