Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Metal–organic frameworks (MOFs) and their derivatives have delivered perfect answers in detection, separation, solving water and electromagnetic pollution and improving catalysis and energy storage efficiency due to their advantages including their highly tunable porosity, structure and versatility. Recently, MOF/biomass, bio-MOFs and their derivatives have gradually become a shining star in the MOF family due to the improvement in the application performance of MOFs using biomass and biomolecules. However, current studies lack a systematic summary of the synthesis and advancements of MOF/biomass, bio-MOFs and their derivatives. In this review, we describe their research progress in detail from the following two aspects: (1) synthesis of MOF/biomass using biomass as a template to achieve good dispersion and connectivity at the same time; (2) preparing bio-MOFs by replacing traditional organic linkers with biomolecules to enhance the connection stability between metal ions/clusters and ligands and avoid the formation of toxic by-products. This enables MOFs to possess additional unique advantages, such as improved biocompatibility and mechanical strength, ideal reusability and stability and lower production costs. Most importantly, this is a further step towards green and sustainable development. Additionally, we showcase some typical application examples to show their great potential, including in the fields of environmental remediation, energy storage and electromagnetic wave absorption.

Details

Title
Recent Advancements in MOF/Biomass and Bio-MOF Multifunctional Materials: A Review
Author
Liu, Jie 1 ; Li, Yanjun 1 ; Lou, Zhichao 1 

 Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; [email protected]; College of Materials Science and Engineering, Nanjing Forestry University, Nanjing 210037, China 
First page
5768
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670454042
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.