Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Purlins made from galvanised steel in fertiliser warehouses have often been considered less efficient, necessitating a new purlin made using corrosion-resistant material to increase building efficiency. This study was an attempt to design a nine-metre purlin from glass-fibre-reinforced polymer (GFRP) composite material for a new fertiliser warehouse in Bontang-East Kalimantan, Indonesia. The purlin design selected in this study was the Z profile of pultruded beams from GFRP composite material that met the criteria of an efficient purlin, such as corrosion resistance, compact stacking, and ability to withstand technical loads. In particular, the Z profile becomes compact when stacked, and the GFRP material used is corrosion-resistant yet affordable. The primary materials for GFRP composites consist of long yarn glass fibre bundles for reinforcement and unsaturated polyester resin (UPR) for the matrix. Material strength modelling was based on analytical and finite element approaches. The analysis shows that the most considerable normal stress of “64.41 MPa” occurred at the two fixed end supports, while the most significant deflection of “45.9 mm” occurred at the mid-span of the purlin structure. The purlin structure was considered safe, as the strength and deflection were below the threshold. Thus, the Z profile of the pultruded purlin beams built using the GFRP composite material meets the technical criteria.

Details

Title
A Novel Z Profile of Pultruded Glass-Fibre-Reinforced Polymer Beams for Purlins
Author
Setyanto, Djoko 1   VIAFID ORCID Logo  ; Yohanes, Adeatma Antonio 1 ; Darmawan, Marten 1 ; Ubaidillah, Ubaidillah 2   VIAFID ORCID Logo 

 Mechanical Engineering Department, Faculty of Engineering, Atma Jaya Catholic University of Indonesia, Jakarta 12930, Indonesia; [email protected] (Y.A.A.); [email protected] (M.D.) 
 Mechanical Engineering Department, Faculty of Engineering, Sebelas Maret University, Surakarta 57126, Indonesia 
First page
5862
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670462386
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.