Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Seasonal dynamics and the vertical stratification of multiple parameters, including water temperature (WT), dissolved oxygen (DO), pH, and chlorophyll-a (Chl-a), were analyzed in Lake Chenghai, Northern Yunnan, based on monitoring data collected in 2015 (October), 2016 (March, May, July), 2017 (March, June, October), 2018 (August), and 2020 (June, November). The results indicate that the lake water was well mixed in winter and spring when the water quality was stable. However, when WT becomes stratified in summer and autumn, the Chl-a content and pH value changed substantially, along with the vertical movement of the thermocline. With rising temperature, the position of the stratified DO layer became higher than the thermocline, leading to a thickening of the water body with a low DO content. This process induced the release of nutrients from lake sediments and promoted eutrophication and cyanobacteria bloom. The thermal stratification structure had some influence on changes in DO, pH, and Chl-a, resulting in the obvious stratification of DO and pH. In summer, with an increase in temperature, thermal stratification was significant. DO and pH achieved peak values in the thermocline, and exhibited a decreasing trend from this peak, both upward and downward. The thermocline was anoxic and the pH value was low. Although Chl-a maintained a low level below the thermocline and was not high, there was a sudden increase in the surface layer, which should be urgently monitored to prevent large-scale algae reproduction and even local outbreaks in Lake Chenghai. Moreover, Lake Chenghai is deeper in the north and shallower in the south: this fact, together with the stronger wind–wave disturbance in the south, results in surface WT in the south being lower than that in the north year-round. This situation results in a gradual diminution of aquatic plants from north to south. Water quality in the lake’s southern extent is better than that in the north, exhibiting obvious spatial heterogeneity. It is recommended that lake water quality monitoring should be strengthened to more fully understand lake water quality and take steps to prevent further deterioration.

Details

Title
Seasonal Variation and Spatial Heterogeneity of Water Quality Parameters in Lake Chenghai in Southwestern China
Author
Hou, Pengfei; Chang, Fengqin; Duan, Lizeng; Zhang, Yang  VIAFID ORCID Logo  ; Zhang, Hucai  VIAFID ORCID Logo 
First page
1640
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734441
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2670479443
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.