It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The evaluation of reliability is not only of high importance for safety-critical deep learning applications but for object pose estimation as well. The uncertainty of the result is one way to express its reliability. In order to better understand existing uncertainty quantification (UQ) methods and their performance on image-based regression tasks, we use a small CNN and various scenarios to evaluate the estimated uncertainties. The evaluation is done on different simplistic synthetic datasets, consisting of gray-scale images of squares on a darker background. We train the CNN to predict the square center position of the square in the image. We compare how different UQ methods perform under dataset shift, rotation, occlusion, noise changes in the images.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing (IPF), Karlsruhe, Germany; Karlsruhe Institute of Technology (KIT), Institute of Photogrammetry and Remote Sensing (IPF), Karlsruhe, Germany





