It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
InP-based quantum dot light-emitting diodes (QLEDs), as less toxic than Cd-free and Pb-free optoelectronic devices, have become the most promising benign alternatives for the next generation lighting and display. However, the development of green-emitting InP-based QLEDs still remains a great challenge to the environmental preparation of InP quantum dots (QDs) and superior device performance. Herein, we reported the highly efficient green-emitting InP-based QLEDs regulated by the inner alloyed shell components. Based on the environmental phosphorus tris(dimethylamino)phosphine ((DMA)3P), we obtained highly efficient InP-based QDs with the narrowest full width at half maximum (~35 nm) and highest quantum yield (~97%) by inserting the gradient inner shell layer ZnSexS1−x without further post-treatment. More importantly, we concretely discussed the effect and physical mechanism of ZnSexS1–x layer on the performance of QDs and QLEDs through the characterization of structure, luminescence, femtosecond transient absorption, and ultraviolet photoelectron spectroscopy. We demonstrated that the insert inner alloyed shell ZnSexS1−x provided bifunctionality, which diminished the interface defects upon balancing the lattice mismatch and tailored the energy levels of InP-based QDs which could promote the balanced carrier injection. The resulting QLEDs applying the InP/ZnSe0.7S0.3/ZnS QDs as an emitter layer exhibited a maximum external quantum efficiency of 15.2% with the electroluminescence peak of 532 nm, which was almost the highest record of InP-based pure green-emitting QLEDs. These results demonstrated the applicability and processability of inner shell component engineering in the preparation of high-quality InP-based QLEDs.
In this work, the pure green-emitting InP/ZnSexS1−x/ZnS quantum dots and their light-emitting diodes with high efficiency were successfully obtained by regulating the components of inner alloyed shell ZnSexS1−x layer.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-Ferrous Metals and Featured Materials, Guangxi University, Nanning, China (GRID:grid.256609.e) (ISNI:0000 0001 2254 5798)
2 Suzhou Xingshuo Nanotech Co., Ltd. (Mesolight), Suzhou, China (GRID:grid.256609.e)




