It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
The formability of aluminum alloy sheet is usually improved during electromagnetic forming (EMF). Here, the ductility enhancement mechanism was investigated on the basis of Gurson-Tvergaard-Needleman (GTN) model. The parameters of GTN models under quasi-static tension and EMF conditions were respectively determined by inverse identification. For AA2024-O aluminum alloy sheet under quasi-static tension, the initial void volume fraction is identified as 0.006, the critical void volume fraction where voids begin to aggregate is 0.075, the void volume fraction of nucleating particles is 0.131 and the mean nucleation strain is 0.44. With the similar initial void volume fraction, the other parameters under EMF condition are determined as 0.045, 0.055 and 0.58. The evolution curve of void volume fraction with strain were compared under EMF condition and quasi-static tension. The results show that the total growth of void volume fraction is less under EMF condition than that under quasi-static tension. A box part with inclined flange was preliminary achieved by electromagnetic forming process. The GTN model was finally verified by comparing the numerical and experimental results.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 School of Materials Science and Engineering, Wuhan University of Technology , Wuhan , China; State Key Laboratory of High Performance Complex Manufacturing, Central South University , Changsha , China
2 School of Materials Science and Engineering, Wuhan University of Technology , Wuhan , China
3 School of Automotive Engineering, Wuhan University of Technology , Wuhan , China