Full text

Turn on search term navigation

Copyright © 2022 Yan Wan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

The present research showcases the Indoor Energy-Saving Optimization Design of green buildings. This integrated approach synergizes a building’s Indoor Energy-Saving process based on the intelligent GANN-BIM model. The GANN-BIM model is driven by genetic algorithms (GAs), which include artificial neural networks (ANNs) along with building information models (BIMs). Building information modeling (BIM) is a technology that involves the modeling and management of digital representation of all forms of structural buildings. These intelligent models can be exchanged and extracted in the form of files and are mainly used for the designing and decision-making of a building. The BIM model is empowered as an intelligent technology by incorporating artificial neural networks (ANNs) and genetic algorithms (GAs). The main objective of the research is Indoor Energy-Saving by implementing an optimized design of green buildings. Green buildings can benefit from the GANN-BIM model’s ability to handle complex and conflicting design requirements while using less computational power during the evaluation of the proposed approach. There are a variety of new green building technologies being developed, but they all share a common goal: to reduce human health and environmental impact by maximizing energy, water, and other resource efficiencies; protecting occupant health; reducing waste; and decreasing pollution. The empirical results of GANN-BIM proved that the proposed model outperforms well in enhancing energy evaluation.

Details

Title
Evaluation of Indoor Energy-Saving Optimization Design of Green Buildings Based on the Intelligent GANN-BIM Model
Author
Wan, Yan 1 ; Zhai, Yujia 1 ; Wang, Xiaoxiao 1   VIAFID ORCID Logo  ; Cui, Can 1 

 Faculty of Humanities and Arts, Macau University of Science and Technology, Avenida Wai Long, Taipa 999078, Macau, China 
Editor
Dost Muhammad Khan
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
1024123X
e-ISSN
15635147
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2673229496
Copyright
Copyright © 2022 Yan Wan et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/