Content area
Abstract
This thesis constructs stable homotopy types underlying symplectic Floer homology, realizing a program proposed by Cohen, Jones and Segal twenty-five years ago. We work in the setting of Liouville manifolds with a stable symplectic trivialization of their tangent bundles, where we prove that the moduli spaces of Floer trajectories are smooth and stably framed. We then develop a basic TQFT formalism, in the stable homotopy category, for producing operations on these Floer homotopy types from families of punctured Riemann surfaces. As a byproduct, we can generalize many familiar algebraic constructions in traditional Floer homology over the integers to Floer homotopy theory: among them symplectic cohomology, wrapped Floer cohomology, and the Donaldson-Fukaya category. "Copies available exclusively from MIT Libraries, libraries.mit.edu/docs | [email protected]"




