Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The debilitating effects of heat stress on poultry production have been well documented. Heat stress already results in severe economic loss worldwide. Regarding the decline in the reproductive performance of heat-stressed hens, the exact mechanisms involved are still unknown. The present study was conducted to elucidate the molecular mechanisms underlying heat-stress-induced abnormal egg production in laying hens. Our results confirmed that laying hens reared under heat stress had impaired laying performance. Follicular granulosa cells cultured in vitro are sensitive to the effects of heat stress, showing an increase in apoptosis and cellular ultrastructural changes. These effects appeared in the form of heat-stress-elevated progesterone, with the increased expression of steroidogenic acute regulatory protein, cytochrome P450 family 11 subfamily A member 1, and 3b-hydroxysteroid dehydrogenase, along with inhibited estradiol synthesis through the decreased expression of follicle-stimulating hormone receptor and the cytochrome P450 family 19 subfamily A member 1. Collectively, laying hens exposed to high temperatures showed damage to granulosa cells that brought about a decline in egg production. This study provides a molecular mechanism for the abnormal laying performance of hens subjected to heat stress, which may help when developing novel strategies to reverse the adverse impact.

Abstract

This study was conducted to elucidate the molecular mechanisms underlying heat stress (HS)-induced abnormal egg-laying in laying hens. Hy-Line brown laying hens were exposed to HS at 32 °C or maintained at 22 °C (control) for 14 days. In addition, granulosa cells (GCs) from preovulatory follicles were subjected to normal (37 °C) or high (41 °C or 43 °C) temperatures in vitro. Proliferation, apoptosis, and steroidogenesis were investigated, and the expression of estrogen and progesterone synthesis-related genes was detected. The results confirmed that laying hens reared under HS had impaired laying performance. HS inhibited proliferation, increased apoptosis, and altered the GC ultrastructure. HS also elevated progesterone secretion by increasing the expression of steroidogenic acute regulatory protein (StAR), cytochrome P450 family 11 subfamily A member 1 (CYP11A1), and 3b-hydroxysteroid dehydrogenase (3β-HSD). In addition, HS inhibited estrogen synthesis in GCs by decreasing the expression of the follicle-stimulating hormone receptor (FSHR) and cytochrome P450 family 19 subfamily A member 1 (CYP19A1). The upregulation of heat shock 70 kDa protein (HSP70) under HS was also observed. Collectively, laying hens exposed to high temperatures experienced damage to follicular GCs and steroidogenesis dysfunction, which reduced their laying performance. This study provides a molecular mechanism for the abnormal laying performance of hens subjected to HS.

Details

Title
Effect of Heat Stress on Egg Production, Steroid Hormone Synthesis, and Related Gene Expression in Chicken Preovulatory Follicular Granulosa Cells
Author
Leyan Yan 1   VIAFID ORCID Logo  ; Hu, Mengdie 1 ; Gu, Lihong 2 ; Lei, Mingming 1 ; Chen, Zhe 1 ; Zhu, Huanxi 1 ; Chen, Rong 1 

 Key Laboratory for Crop and Animal Integrated Farming, Ministry of Agriculture and Rural Affairs, Animal Husbandry Institute, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China; [email protected] (L.Y.); [email protected] (M.H.); [email protected] (M.L.); [email protected] (Z.C.) 
 Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou 571100, China; [email protected] 
First page
1467
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20762615
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674316647
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.