Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

This paper presents a Ku-band transmit and receive IC in 0.13 µm CMOS technology for mobile satellite communication beamforming systems. A Ku-band transmit and receive IC is composed of a bi-directional amplifier, a 6-bit phase shifter, and a 6-bit digital step attenuator. The precise trimming bits are implemented in the phase shifter (2.8°) and digital step attenuator (0.5 and 1 dB) for the amplitude and phase error correction. The phase variation range of the phase shifter is 360° with a phase resolution of 5.625°. The attenuation range of 31.5 dB with an amplitude resolution of 0.5 dB is achieved. The gain of 2~5 dB and the input/output return losses of >10 dB are achieved from 12 to 16 GHz. The chip size is 2.5 × 1.5 mm2 including bonding pads. The DC power consumption is 216 mW.

Details

Title
A Ku-Band Bi-Directional Transmit and Receive IC in 0.13 μm CMOS Technology
Author
Jeong-Geun, Kim 1 ; Baek, Donghyun 2   VIAFID ORCID Logo 

 Department of Electronic Engineering, Kwangwoon University, Seoul 01897, Korea; [email protected] 
 School of Electrical Engineering, Chung-Ang University, Seoul 06974, Korea 
First page
5710
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674332200
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.