Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

A landslide susceptibility model based on a metaheuristic optimization algorithm (germinal center optimization (GCO)) and support vector classification (SVC) is proposed and applied to landslide susceptibility mapping in the Three Gorges Reservoir area in this paper. The proposed GCO-SVC model was constructed via the following steps: First, data on 11 influencing factors and 292 landslide polygons were collected to establish the spatial database. Then, after the influencing factors were subjected to multicollinearity analysis, the data were randomly divided into training and testing sets at a ratio of 7:3. Next, the SVC model with 5-fold cross-validation was optimized by hyperparameter space search using GCO to obtain the optimal hyperparameters, and then the best model was constructed based on the optimal hyperparameters and training set. Finally, the best model acquired by GCO-SVC was applied for landslide susceptibility mapping (LSM), and its performance was compared with that of 6 popular models. The proposed GCO-SVC model achieved better performance (0.9425) than the genetic algorithm support vector classification (GA-SVC; 0.9371), grid search optimized support vector classification (GRID-SVC; 0.9198), random forest (RF; 0.9085), artificial neural network (ANN; 0.9075), K-nearest neighbor (KNN; 0.8976), and decision tree (DT; 0.8914) models in terms of the area under the receiver operating characteristic curve (AUC), and the trends of the other metrics were consistent with that of the AUC. Therefore, the proposed GCO-SVC model has some advantages in LSM and may be worth promoting for wide use.

Details

Title
Landslide Susceptibility Mapping Based on the Germinal Center Optimization Algorithm and Support Vector Classification
Author
Ding, Xia 1   VIAFID ORCID Logo  ; Tang, Huiming 2 ; Sun, Sixuan 1 ; Tang, Chunyan 1 ; Zhang, Bocheng 1 

 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; [email protected] (D.X.); [email protected] (S.S.); [email protected] (C.T.); [email protected] (B.Z.) 
 Faculty of Engineering, China University of Geosciences, Wuhan 430074, China; [email protected] (D.X.); [email protected] (S.S.); [email protected] (C.T.); [email protected] (B.Z.); Badong National Observation and Research Station of Geohazards, China University of Geosciences, Wuhan 430074, China 
First page
2707
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2674390457
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.