Full Text

Turn on search term navigation

© 2021. This work is licensed under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

为了研究肥料减施和水稻秸秆生物质炭添加对水稻田土壤细菌多样性的影响,采用MiSeq高通量测序分析技术,对不同施肥量(100%、90%、80%常规施肥)和添加水稻秸秆生物质炭(1%)的水稻田非根际和根际土壤进行了细菌多样性分析。结果表明,与非根际土相比,水稻根际微生物细菌多样性更加丰富。从门水平看,最主要是变形菌门,占34.85%~47.57%,添加生物质炭降低了变形菌门在非根际土中的丰度,而促进其在根际土中富集,肥料减施对变形菌门丰度的影响刚好相反,且减施肥料越多对变形菌门影响越大;酸杆菌门次之,占10.48%~19.42%,变化趋势与变形菌门相反。从属水平看,Unclassified Burkholderiaceae、Unclassified Subgroup 6、Unclassified bacterium 126等菌属在土壤中占比较高。典范对应分析(CCA)结果表明,优势菌群丰度与采样位置、肥料添加、生物质炭添加等环境因素存在一定的相关性。研究表明,不同减肥条件下(80%和90%)生物质炭的施用(1%)均会对土壤细菌多样性造成影响,其变化与采样位置、肥料减施量和生物质炭添加密切相关。

We studied the effects of rice straw biochar addition on the microbial diversity of a paddy soil under fertilizer reduction. The MiSeq high-throughput sequencing analysis technology was used to analyze the microbial diversity of the rhizosphere and bulk soil under different levels of fertilization application(100%, 90%, and 80% of the conventional fertilization) and rice straw biochar addition(1%). The results indicated that the microbial diversity of the rhizosphere was more abundant than that of the bulk soil. Proteobacteria was the dominant phylum of Gram-negative bacteria accounting for 34.85%~47.57%. Biochar addition could reduce the abundance of Proteobacteria in the bulk soil and promote it in the rhizosphere. However, the reduction of fertilizer had an opposite effect on the abundance of Proteobacteria, while the greater influence was evidenced with more fertilizer reduction. In addition, Acidobacteria accounted for 10.48%~19.42%, which had an opposite response to that of Proteobacteria. At the genus level, Unclassified Burkholderiaceae, Unclassified Subgroup 6, and Unclassified bacterium 126 accounted for a relatively high proportion or microorganisms in the rhizosphere and bulk soil. The results of the Canonical Correspondence Analysis(CCA) showed that the abundance of dominant bacteria was related to environmental factors such as sampling location, fertilizer treatment, and biochar addition. Our study showed that the different fertilizer reduction(80% or 90%) and rice straw biochar addition(1%) could influence the microbial diversity of the rhizosphere and bulk soil, which was closely related to sampling location, fertilizer reduction, and biochar addition.

Details

Title
Effects of biochar addition on the microbial diversity of paddy soils under fertilizer reduction
Pages
385-392
Section
Contents
Publication year
2021
Publication date
2021
Publisher
Journal of Agricultural Resources and Environment (JARE)
ISSN
20956819
Source type
Scholarly Journal
Language of publication
Chinese
ProQuest document ID
2675169817
Copyright
© 2021. This work is licensed under http://creativecommons.org/licenses/by-nc/3.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.