Abstract

Calcium sulfate (CaSO4) scale has been identified as one of the most common scales contributing to several serious operating problems in oil and gas wells and water injectors. Removing this scale is considered an economically feasible process in most cases as it enhances the productivity of wells and prevents potential severe equipment damage. In this study, a single-step method utilizing potassium carbonate and tetrapotassium ethylenediaminetetraacetate (K4-EDTA) at high temperature (200 °F) has been used to remove CaSO4 scale. The CaSO4 scale was converted to calcium carbonate (CaCO3) and potassium sulfate (K2SO4) using a conversion agent, potassium carbonate (K2CO3), at a high temperature (200 °F) and under various pH conditions. Various parameters were investigated to obtain a dissolver composition at which the optimum dissolution efficiency is achieved including the effect of dissolver pH, soaking time, the concentration of K4-EDTA, the concentration of potassium carbonate (K2CO3), temperature impact and agitation effect. Fourier transform infrared, X-ray crystallography, ion chromatography, stability tests and corrosion tests were carried out to test the end product of the process and showcase the stability of the dissolver at high temperature conditions. A reaction product (K2SO4) was obtained in most of the tests with different quantities and was soluble in both water and HCl. It was observed that the dissolver solution was effective at low pH (7) and resulted in a negligible amount of reaction product with 3 wt% CaSO4 dissolution. The 10.5-pH dissolver was effective in most of the cases and provided highest dissolution efficiency. The reaction product has been characterized and showed it is not corrosive. Both 7-pH and 10.5-pH dissolvers showed high stability at high temperature and minimum corrosion rates. The single step dissolution process showed its effectiveness and could potentially save significant pumping time if implemented in operation.

Details

Title
Single step calcium sulfate scale removal at high temperature using tetrapotassium ethylenediaminetetraacetate with potassium carbonate
Author
Murtaza, Mobeen 1 ; Alarifi, Sulaiman A. 2 ; Rasm, Mohammed Yousef 3 ; Kamal, Muhammad Shahzad 1 ; Mahmoud, Mohamed 2 ; Al-Ajmi, Mohammed 3 

 King Fahd University of Petroleum and Minerals, Center for Integrative Petroleum Research (CIPR), Dhahran, Saudi Arabia (GRID:grid.412135.0) (ISNI:0000 0001 1091 0356) 
 King Fahd University of Petroleum and Minerals (KFUPM), Department of Petroleum Engineering, Dhahran, Saudi Arabia (GRID:grid.412135.0) (ISNI:0000 0001 1091 0356) 
 Petroleum and Energy Logistics and Services Co. (Petrogistix), Al-Khobar, Saudi Arabia (GRID:grid.412135.0) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2677227083
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.