It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Materials with insulator-metal transitions promise advanced functionalities for future information technology. Patterning on the microscale is key for miniaturized functional devices, but material properties may vary spatially across microstructures. Characterization of these miniaturized devices requires electronic structure probes with sufficient spatial resolution to understand the influence of structure size and shape on functional properties. The present study demonstrates the use of imaging soft X-ray absorption spectroscopy with a spatial resolution better than 2
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Universität Hamburg, Physics Department, Hamburg, Germany (GRID:grid.9026.d) (ISNI:0000 0001 2287 2617)
2 Paul Scherrer Institut (PSI), Villigen, Switzerland (GRID:grid.5991.4) (ISNI:0000 0001 1090 7501)
3 Kiel University, Institut für Experimentelle und Angewandte Physik, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986); Deutsches Elektronen-Synchrotron DESY, Ruprecht-Haensel-Labor, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453)
4 Deutsches Elektronen-Synchrotron DESY, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453)
5 Deutsches Elektronen-Synchrotron DESY, Ruprecht-Haensel-Labor, Hamburg, Germany (GRID:grid.7683.a) (ISNI:0000 0004 0492 0453); Thapar Institute of Engineering and Technology, School of Physics and Materials Science, Patiala, India (GRID:grid.412436.6) (ISNI:0000 0004 0500 6866)
6 Kiel University, Faculty of Engineering, Chair of Nanoelectronics, Kiel, Germany (GRID:grid.9764.c) (ISNI:0000 0001 2153 9986)
7 Helmholtz-Zentrum Berlin für Materialien und Energie, Berlin, Germany (GRID:grid.424048.e) (ISNI:0000 0001 1090 3682)