It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Traffic flow prediction is an important part of an intelligent transportation system to alleviate congestion. In practice, most small and medium-sized activities are not given priority in transport planning, yet these activities often bring about a surge in demand for public transport. It is recognized that such patterns are inevitably more difficult to predict than those associated with day-to-day mobility, and that forecasting models built using traffic data alone are not comprehensive enough. Aiming at this problem, a depthwise separable convolutional fusion forecast network (FFN) was proposed by focusing on the impact of event information on traffic flow demand. FFN fused heterogeneous data to model traffic data, weather information, and event information extracted from the Internet. The depthwise separable one-dimensional convolution was used to encode the textual information describing the event layer by layer, and local one-dimensional sequence segments (ie subsequences) were extracted from the sequence to retain rich local semantic features. In the modeling process, the interaction of heterogeneous data was established, that is, the temporal and other data were used to drive the textual information representation in the encoding process to capture better relevant textual representations. Finally, information from different sources and formats was fused to obtain a joint feature representation tensor that predicts the traffic demand in the next day's event area. The experimental results show that the average absolute error of the fusion prediction network is reduced by 26.5%, the root mean square error is reduced by 11.6%, and the judgment coefficient is increased by 26.4% compared with the prediction network that only considers the traffic data.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Hunan University of Technology, School of Railway Transportation, Zhuzhou, China (GRID:grid.411431.2) (ISNI:0000 0000 9731 2422)