Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The tremendous advancement of cardiac imaging methods, the substantial progress in predictive modelling, along with the amount of new investigative multimodalities, challenge the current technologies in the cardiology field. Innovative, robust and multimodal tools need to be created in order to fuse imaging data (e.g., MR, CT) with mapped electrical activity and to integrate those into 3D biophysical models. In the past years, several cross-platform toolkits have been developed to provide image analysis tools to help build such software. The aim of this study is to introduce a novel multimodality software platform dedicated to cardiovascular diagnosis and therapy guidance: MUSIC. This platform was created to improve the image-guided cardiovascular interventional procedures and is a robust platform for AI/Deep Learning, image analysis and modelling in a newly created consortium with international hospitals. It also helps our researchers develop new techniques and have a better understanding of the cardiac tissue properties and physiological signals. Thus, this extraction of quantitative information from medical data leads to more repeatable and reliable medical diagnoses.

Details

Title
MUSIC: Cardiac Imaging, Modelling and Visualisation Software for Diagnosis and Therapy
Author
Merle, Mathilde 1 ; Collot, Florent 1 ; Castelneau, Julien 2 ; Migerditichan, Pauline 2 ; Juhoor, Mehdi 1 ; Ly, Buntheng 3 ; Ozenne, Valery 1   VIAFID ORCID Logo  ; Quesson, Bruno 1   VIAFID ORCID Logo  ; Zemzemi, Nejib 4 ; Coudière, Yves 4 ; Jaïs, Pierre 1   VIAFID ORCID Logo  ; Cochet, Hubert 1 ; Sermesant, Maxime 5   VIAFID ORCID Logo 

 IHU Liryc, 33600 Pessac, France; [email protected] (M.M.); [email protected] (F.C.); [email protected] (M.J.); [email protected] (V.O.); [email protected] (B.Q.); [email protected] (N.Z.); [email protected] (Y.C.); [email protected] (P.J.); [email protected] (H.C.) 
 Inria Bordeaux, 33000 Bordeaux, France; [email protected] (J.C.); [email protected] (P.M.) 
 Centre Inria d’Université Côte d’Azur, 06902 Sophia Antipolis, France; [email protected] 
 IHU Liryc, 33600 Pessac, France; [email protected] (M.M.); [email protected] (F.C.); [email protected] (M.J.); [email protected] (V.O.); [email protected] (B.Q.); [email protected] (N.Z.); [email protected] (Y.C.); [email protected] (P.J.); [email protected] (H.C.); Inria Bordeaux, 33000 Bordeaux, France; [email protected] (J.C.); [email protected] (P.M.) 
 IHU Liryc, 33600 Pessac, France; [email protected] (M.M.); [email protected] (F.C.); [email protected] (M.J.); [email protected] (V.O.); [email protected] (B.Q.); [email protected] (N.Z.); [email protected] (Y.C.); [email protected] (P.J.); [email protected] (H.C.); Centre Inria d’Université Côte d’Azur, 06902 Sophia Antipolis, France; [email protected] 
First page
6145
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679681787
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.