Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The shortcomings with acceptors in p-type III-nitride semiconductors have resulted in not many efforts being presented on III-nitride based p-channel electronic devices (here, field effect transistors (FETs)). The polarization effects in III-nitride superlattices (SLs) lead to the periodic oscillation of the energy bands, exhibiting enhanced ionization of the deep acceptors (Mg in this study), and hence their use in III-nitride semiconductor-based light-emitting diodes (LEDs) and p-channel FETs is beneficial. This study experimentally demonstrates the presence of acceptor-like traps at the positive polarization interfaces acting as the primary source of holes in Ga-polar p-type uniformly doped (AlGaN/AlN)/GaN SLs with limited Mg doping. The observed concentration of holes exceeding that of the dopants incorporated into the samples during growth can be attributed to the ionization of acceptor-like traps, located at 0.8 eV above the valence band of GaN, at positive polarization interfaces. All samples were grown using the metal organic vapor phase epitaxy (MOVPE) technique, and the materials’ characterization was carried out using X-ray diffraction and Hall effect measurements. The hole concentrations experimentally measured are juxtaposed with the calculated value of hole concentrations from FETIS®, and the measured trends in mobility are explained using the amplitude of separation of the two-dimensional hole gas in the systems from the positive polarization interfaces.

Details

Title
Demonstration of Acceptor-Like Traps at Positive Polarization Interfaces in Ga-Polar P-type (AlGaN/AlN)/GaN Superlattices
Author
Athith Krishna  VIAFID ORCID Logo  ; Raj, Aditya; Hatui, Nirupam  VIAFID ORCID Logo  ; Keller, Stacia; Mishra, Umesh K
First page
784
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734352
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679702160
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.