Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Simple Summary

The stick tea thrip Dendrothrips minowai is a key pest in tea plantations in China. In recent years, plant-derived semiochemicals have attracted considerable attention as promising attractants for the management of thrips, due to their safety and low cost. In this study, compounds that have been reported to attract other thrips or emitted from tea plants were evaluated for their electroantennogram (EAG), behavioral tests and field trapping efficacy for D. minowai. The EAG relative response value of D. minowai evoked by p-anisaldehyde, 3-methyl butanal, (E)-β-ocimene, farnesene, nonanal, eugenol, (+)-α-pinene, limonene, (−)-α-pinene, and γ-terpinene was significantly higher than the other compounds. Meanwhile, p-anisaldehyde, eugenol, farnesene, methyl benzoate, 3-methyl butanal, (E)-β-ocimene, (−)-α-pinene, (+)-α-pinene, and γ-terpinene led to attraction or repellency responses of female D. minowai. In addition, trap capture numbers of female D. minowai on sticky traps baited with p-anisaldehyde, eugenol, farnesene, and 3-methyl butanal were significantly higher than the control in tea plantations. Overall, our results highlight the potential application of plant volatiles in the development of effective, eco-friendly lure formulations for use in the monitoring and management of thrips.

Abstract

The stick tea thrip (Dendrothrips minowai Priesner) is the main pest thrip in tea (Camellia sinensis) plantations in China, and seriously affects the quality and yield of tea. Plant-derived semiochemicals provide an alternative to pheromones as lures and these compounds possess powerful attractiveness. In this study, we selected 20 non-pheromone semiochemicals, including compounds that have been reported to attract other thrips and some volatiles emitted from tea plants as the potential attractant components for D. minowai. In electroantennogram (EAG) assays, 10 synthetic compounds (p-anisaldehyde, 3-methyl butanal, (E)-β-ocimene, farnesene, nonanal, eugenol, (+)-α-pinene, limonene, (−)-α-pinene, and γ-terpinene) elicited significant antennal responses in female D. minowai. In addition, a two-choice H-tube olfactometer bioassay showed that D. minowai displayed significant positive responses to eight compound dilutions (p-anisaldehyde, eugenol, farnesene, methyl benzoate, 3-methyl butanal, (E)-β-ocimene, (−)-α-pinene, and (+)-α-pinene) when compared with the solvent control at both 1 and 2 h. Moreover, γ-terpinene exhibited a significantly deterrent effect on D. minowai. Finally, trap catches of four compounds (p-anisaldehyde, eugenol, farnesene, and 3-methyl butanal, respectively) significantly increase in tea plantations. Among these, the maximum number of D. minowai collected by blue sticky traps baited with p-anisaldehyde was 7.7 times higher than the control. In conclusion, p-anisaldehyde, eugenol, farnesene, and 3-methyl butanal could significantly attract D. minowai in the laboratory and under field conditions, suggesting considerable potential as commercial attractants to control D. minowai populations.

Details

Title
Evaluation of Selected Plant Volatiles as Attractants for the Stick Tea Thrip Dendrothrips minowai in the Laboratory and Tea Plantation
Author
Xiu, Chunli 1 ; Zhang, Fengge 2 ; Pan, Hongsheng 3 ; Bian, Lei 1 ; Luo, Zongxiu 1 ; Li, Zhaoqun 1 ; Fu, Nanxia 1 ; Cai, Xiaoming 1 ; Chen, Zongmao 1 

 Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China; [email protected] (C.X.); [email protected] (L.B.); [email protected] (Z.L.); [email protected] (Z.L.); [email protected] (N.F.); Key Laboratory of Biology, Genetics and Breeding of Special Economic Animals and Plants, Ministry of Agriculture and Rural Affairs, Hangzhou 310008, China 
 Henan Institute of Science and Technology, Xinxiang 453003, China; [email protected] 
 Institute of Plant Protection, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; [email protected] 
First page
509
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20754450
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679738344
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.