Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The rhamnolipid production of Pseudomonas aeruginosa has been impeded by its severe foaming; overcoming the bottleneck of foaming has become the most urgent requirement for rhamnolipid production in recent decades. In this study, we performed rhamnolipid fermentation under weakly acidic conditions to address this bottleneck. The results showed that the foaming behavior of rhamnolipid fermentation broths was pH-dependent with the foaming ability decreasing from 162.8% to 28.6% from pH 8 to 4. The “non-foaming” rhamnolipid fermentation can be realized at pH 5.5, but the biosynthesis of rhamnolipids was significantly inhibited. Further, rhamnolipid yield rebounded from 8.1 g/L to 15.4 g/L after ultraviolet and ethyl methanesulfonate compound mutagenesis. The mechanism study showed that the species changes of rhamnolipid homologs did not affect the foaming behavior of the fermentation but had a slight effect on the bioactivity of rhamnolipids. At pH 8.0 to 5.0, increased surface tension, decreased viscosity and zeta potential, and aggregation of rhamnolipid molecules contributed to the “non-foaming” rhamnolipid fermentation. This study provides a promising avenue for the “non-foaming” rhamnolipid fermentation and elucidates the mechanisms involved, facilitating the understanding of pH-associated foaming behavior and developing a more efficient strategy for achieving rhamnolipid production.

Details

Title
Achieving “Non-Foaming” Rhamnolipid Production and Productivity Rebounds of Pseudomonas aeruginosa under Weakly Acidic Fermentation
Author
Gong, Zhijin; He, Qiuhong; Liu, Jinfeng; Zhou, Jing; Che, Chengchuan; Si, Meiru; Yang, Ge
First page
1091
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20762607
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679763251
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.