Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The present research is a comprehensive investigation of Dasycladus vermicularis (Scopoli) Krasser 1898 from the Adriatic Sea (Croatia) regarding volatilome–volatile organic compounds (VOCs, mostly nonpolar compounds) and less polar nonvolatile compounds for the first time. Headspace solid-phase microextraction (HS-SPME) and hydrodistillation (HD) were used showing the great volatilome variability among fresh (HS-FrDV and HD-FrDV) and dried (HS-DrDV and HD-DrDV) samples after GC–MS analysis. Aromatic aldehydes were dominant in both fresh and air-dried HS samples with benzaldehyde as the most abundant in fresh samples and decreasing 2.7–3.7 times after drying together with 2-phenylbut-2-enal that was not present after drying. Aliphatic compounds (unsaturated hydrocarbons in HS-FrDV; saturated hydrocarbons in HS-DrDV) were also present. C11-hydrocarbons (dictyopterpene C’ and dictyopterpene D’) were detected in HS-FrDV. (E)-Phytol was the most dominant compound in HD-FrDV and HD-DrDV. Diterpene alcohols (cembra-4,7,11,15-tetraen-3-ol and (Z)-falcarinol) and sesquiterpene alcohol, cubenol, were dominant in HD-FrDV, and their abundance decreased after drying. C13-norisoprenoides (α-ionone and β-ionone) increased after drying. Aliphatic compounds were present in both HD-FrDV and HD-DrDV samples. The less polar nonvolatile compounds in the obtained fractions F3 and F4 were analysed and identified by UHPLC-ESI(+)-HRMS. Identified compounds belonged to a group of pigments (7 compounds), fatty acid derivatives (13 compounds), as well as steroids and terpenes (10 compounds). Porphyrin-based compounds (C55H74N4O5–7), xanthophylls, sphingolipid compounds, fatty acid amides, and phytosterols represented the majority of identified compounds. By implementing both in vitro and in vivo assays for antioxidant activity determination, F3 showed a higher activity than F4. Inhibitory concentrations (IC50) for F3 and F4 were 498.00 ± 0.01 µg/mL and 798.00 ± 0.81 µg/mL, respectively, while a 1.5-fold reduction in the ROS level was observed after pre-treatment of zebrafish larvae with 45 µg/mL of F3.

Details

Title
In Vivo and In Vitro Antioxidant Activity of Less Polar Fractions of Dasycladus vermicularis (Scopoli) Krasser 1898 and the Chemical Composition of Fractions and Macroalga Volatilome
Author
Radman, Sanja 1 ; Ana-Marija Cikoš 2 ; Babić, Sanja 3   VIAFID ORCID Logo  ; Čižmek, Lara 3 ; Čož-Rakovac, Rozelindra 3 ; Jokić, Stela 2   VIAFID ORCID Logo  ; Jerković, Igor 1   VIAFID ORCID Logo 

 Department of Organic Chemistry, Faculty of Chemistry and Technology, University of Split, Ruđera Boškovića 35, 21000 Split, Croatia; [email protected] 
 Department of Process Engineering, Faculty of Food Technology, Josip Juraj Strossmayer University of Osijek, Franje Kuhača 18, 31000 Osijek, Croatia; [email protected] (A.-M.C.); [email protected] (S.J.) 
 Laboratory for Aquaculture Biotechnology, Division of Materials Chemistry, Ruđer Bošković Institute, Bijenička Cesta 54, 10000 Zagreb, Croatia; [email protected] (S.B.); [email protected] (L.Č.); [email protected] (R.Č.-R.) 
First page
743
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248247
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679808650
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.