Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The purpose of this article is to present the use of a previously validated wearable sensor device, Armbeep, in a real-life application, to enhance a tennis player’s training by monitoring and analysis of the time, physiological, movement, and tennis-specific workload and recovery indicators, based on fused sensor data acquired by the wearable sensor—a miniature wearable sensor device, designed to be worn on a wrist, that can detect and record movement and biometric information, where the basic signal processing is performed directly on the device, while the more complex signal analysis is performed in the cloud. The inertial measurements and pulse-rate detection of the wearable device were validated previously, showing acceptability for monitoring workload and recovery during tennis practice and matches. This study is one of the first attempts to monitor the daily workload and recovery of tennis players under real conditions. Based on these data, we can instruct the coach and the player to adjust the daily workload. This optimizes the level of an athlete’s training load, increases the effectiveness of training, enables an individual approach, and reduces the possibility of overuse or injuries. This study is a practical example of the use of modern technology in the return of injured athletes to normal training and competition. This information will help tennis coaches and players to objectify their workloads during training and competitions, as this is usually only an intuitive assessment.

Details

Title
Real-Life Application of a Wearable Device towards Injury Prevention in Tennis: A Single-Case Study
Author
Kramberger, Iztok 1   VIAFID ORCID Logo  ; Filipčič, Aleš 2 ; Germič, Aleš 2 ; Kos, Marko 1 

 Faculty of Electrical Engineering and Computer Science, University of Maribor, Koroška Cesta 046, 2000 Maribor, Slovenia; [email protected] 
 Faculty of Sport, University of Ljubljana, Gortanova 22, 1000 Ljubljana, Slovenia; [email protected] (A.F.); [email protected] (A.G.) 
First page
4436
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
14248220
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679844926
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.