Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

The application of remote sensing technology in grassland monitoring and management has been ongoing for decades. Compared with traditional ground measurements, remote sensing technology has the overall advantage of convenience, efficiency, and cost effectiveness, especially over large areas. This paper provides a comprehensive review of the latest remote sensing estimation methods for some critical grassland parameters, including above-ground biomass, primary productivity, fractional vegetation cover, and leaf area index. Then, the applications of remote sensing monitoring are also reviewed from the perspective of their use of these parameters and other remote sensing data. In detail, grassland degradation and grassland use monitoring are evaluated. In addition, disaster monitoring and carbon cycle monitoring are also included. Overall, most studies have used empirical models and statistical regression models, while the number of machine learning approaches has an increasing trend. In addition, some specialized methods, such as the light use efficiency approaches for primary productivity and the mixed pixel decomposition methods for vegetation coverage, have been widely used and improved. However, all the above methods have certain limitations. For future work, it is recommended that most applications should adopt the advanced estimation methods rather than simple statistical regression models. In particular, the potential of deep learning in processing high-dimensional data and fitting non-linear relationships should be further explored. Meanwhile, it is also important to explore the potential of some new vegetation indices based on the spectral characteristics of the specific grassland under study. Finally, the fusion of multi-source images should also be considered to address the deficiencies in information and resolution of remote sensing images acquired by a single sensor or satellite.

Details

Title
Review of Remote Sensing Applications in Grassland Monitoring
Author
Wang, Zhaobin 1 ; Ma, Yikun 2 ; Zhang, Yaonan 3   VIAFID ORCID Logo  ; Shang, Jiali 4 

 School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China; [email protected]; National Cryosphere Desert Data Center, Lanzhou 730000, China; [email protected] 
 School of Information Science and Engineering, Lanzhou University, Lanzhou 730000, China; [email protected] 
 National Cryosphere Desert Data Center, Lanzhou 730000, China; [email protected]; Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China 
 Agriculture and Agri-Food Canada, 960 Carling Avenue, Ottawa, ON K1A 0C6, Canada; [email protected] 
First page
2903
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20724292
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2679856958
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.