Full text

Turn on search term navigation

Copyright © 2022 Li Geng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

In the huge number of online university education resources, it is difficult for learners to quickly locate the resources they need, which leads to “information trek.” Traditional information recommendation methods tend to ignore the characteristics of learners, who are the main subjects of education. In order to improve the recommendation accuracy, a recommendation algorithm based on improved collaborative filtering model is proposed in this paper. Firstly, according to the student behavior data, consider the behavior order to create the behavior graph and behavior route. Then, the path of text type is vectorized by the Keras Tokenizer method. Finally, the similarity between multidimensional behavior path vectors is calculated, and path collaborative filtering recommendations are performed for each dimension separately. The MOOC data of a university in China are introduced to experimentally compare the algorithm of the article as well as the control group algorithm. The results show that the proposed algorithm takes better values in evaluation indexes, thus verifying that this algorithm can improve the effectiveness of innovation and entrepreneurship education resources recommendation in universities.

Details

Title
The Recommendation System of Innovation and Entrepreneurship Education Resources in Universities Based on Improved Collaborative Filtering Model
Author
Li, Geng 1   VIAFID ORCID Logo 

 Xi'an Physical Education University, Xian 710068, China 
Editor
Xin Ning
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
16875265
e-ISSN
16875273
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2680914987
Copyright
Copyright © 2022 Li Geng. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/