Abstract

This research aims to understand the neural dynamics and mechanisms underlying perceptual bistability. In perceptual rivalry, ambiguous sensory information leads to dynamic changes in the perceptual interpretation of fixed stimuli. This phenomenon occurs when participants receive sensory stimuli that support two or more distinct interpretations; this results in spontaneous alternations between possible perceptual interpretations. Perceptual rivalry has been widely studied across different sensory modalities including vision, audition, and to a limited extent, in the tactile domain. Common features of perceptual rivalry across various ambiguous visual and auditory paradigms characterise the randomness of switching times and their dependence on input strength manipulations (Levelt's propositions).

Binocular rivalry occurs when the two eyes are presented with incompatible stimuli and perception alternates between these two stimuli. This phenomenon has been investigated in two types of experiments: 1) Traditional experiments where the stimulus is fixed, 2) Eye-swap experiments in which stimulus periodically swaps between eyes many times per second (Logothetis et al. 1996). In spite of the rapid swapping between eyes, perception can be stable for many seconds with specific stimulus parameter configurations. Wilson introduced a two-stage, hierarchical model to explain both types of experiments (Wilson 2003).computationala}. Wilson's model and other rivalry models have been only studied with bifurcation analysis for fixed inputs and different dynamical behaviours that can occur with periodic forcing have yet to be explored. Here I report 1) a more complete description of the complex dynamics in the unforced Wilson model, 2) a bifurcation analysis with periodic forcing. Previously, bifurcation analysis of the Wilson model with fixed inputs has revealed three main types of dynamical behaviours: Winner-take-all (WTA), Rivalry oscillations (RIV), Simultaneous activity (SIM). The results presented here reveal richer dynamics including mixed-mode oscillations (MMOs) and period-doubling cascade which corresponds to low amplitude WTA (LAWTA) oscillations. On the other hand, studying rivalry models with numerical continuation shows that periodic forcing with high frequency (e.g. 18 Hz, known as flicker) modulates the three main types of behaviours that occur with fixed inputs by the forcing frequency (WTA-Mod, RIV-Mod, SIM-Mod). However, the dynamical behaviour will be different with low frequency periodic forcing (around 1.5Hz, so-called swap), and in addition to WTA-Mod and SIM-Mod, cycle skipping and multi-cycle skipping behaviour exist, which can also lead to chaotic dynamics. This research provides a framework for either assessing binocular rivalry models for consistency checks against empirical results, or for better understanding neural dynamics and the mechanisms necessary to implement a minimal binocular rivalry model.

At present, it remains unclear whether the general characteristics of perceptual rivalry are preserved with tactile stimuli. I introduce a simple tactile stimulus capable of generating perceptual rivalry and explore whether general features of perceptual rivalry from other modalities extend to the tactile domain. In these experiments, vibrotactile stimuli consisted of anti-phase sequences of high and low intensity high-frequency pulses, each followed by a silent interval, delivered to the right and left index fingers. Participants perceived the stimulus as either one simultaneous pattern of vibration on both hands (SIM), or patterns of vibration that jumped from one hand to the other hand, giving a sensation of apparent movement (AM). For long stimulus presentations, perception switches back and forth between these two percepts.

Details

Title
Neural Dynamics of Perceptual Competition
Author
Darki, Farzaneh
Publication year
2021
Publisher
ProQuest Dissertations & Theses
ISBN
9798379637804
Source type
Dissertation or Thesis
Language of publication
English
ProQuest document ID
2685121690
Full text outside of ProQuest
Copyright
Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works.