Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

With the rapid growth of video data traffic on the Internet and the development of new types of video transmission systems, the need for ad hoc video encoders has also increased. One such case involves Unmanned Aerial Vehicles (UAVs), widely known as drones, which are used in drone races, search and rescue efforts, capturing panoramic views, and so on. In this paper, we provide an efficiency comparison of the two most popular video encoders—H.264 and H.265—in a drone piloting system using first-person view (FPV). In this system, a drone is used to capture video, which is then transmitted to FPV goggles in real time. We examine the compression efficiency of 4K drone footage by varying parameters such as Group of Pictures (GOP) size, Quantization Parameter (QP), and target bitrate. The quality of the compressed footage is determined using four objective video quality measures: PSNR, SSIM, VMAF, and BRISQUE. Apart from video quality, encoding time and encoding energy consumption are also compared. The research was performed using numerous nodes on a supercomputer.

Details

Title
Performance Comparison of H.264 and H.265 Encoders in a 4K FPV Drone Piloting System
Author
Benjak, Jakov 1   VIAFID ORCID Logo  ; Hofman, Daniel 1   VIAFID ORCID Logo  ; Knezović, Josip 1   VIAFID ORCID Logo  ; Žagar, Martin 2   VIAFID ORCID Logo 

 Faculty of Electrical Engineering and Computing, University of Zagreb, 10000 Zagreb, Croatia; [email protected] (J.B.); [email protected] (J.K.) 
 Web and Mobile Computing Department, RIT Croatia, 10000 Zagreb, Croatia; [email protected] 
First page
6386
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2685973722
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.