Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

As renewable energy sources, such as solar systems, are becoming more popular, the focus is moving into more effective utilization of these energy sources and harvesting more energy for intermittency reduction in this renewable source. This is opening up a market for methods of energy storage and increasing interest in batteries, as they are, as it stands, the foremost energy storage device available to suit a wide range of requirements. This interest has brought to light the downfalls of batteries and resultantly made room for the investigation of ultra-capacitors as a solution to these downfalls. One of these downfalls is related to the decrease in capacity, and temperamentality thereof, of a battery when not used precisely as stated by the supplier. The usable capacity is reliant on the complete discharge/charge cycles the battery can undergo before a 20% degradation in its specified capacity is observed. This article aims to investigate what causes this degradation, what aggravates it and how the degradation affects the usage of the battery. This investigation will lead to the identification of a gap in which this degradation can be decreased, prolonging the usage and increasing the feasibility of the energy storage devices.

Details

Title
A Comparative Review of Lead-Acid, Lithium-Ion and Ultra-Capacitor Technologies and Their Degradation Mechanisms
Author
Townsend, Ashleigh  VIAFID ORCID Logo  ; Gouws, Rupert  VIAFID ORCID Logo 
First page
4930
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
19961073
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686005956
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.