Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Forward osmosis (FO) is an evolving membrane separation technology for water treatment and reclamation. However, FO water treatment technology is limited by factors such as concentration polarization, membrane fouling, and reverse solute flux. Therefore, it is of a great importance to prepare an efficient high-density porous membrane and to select an appropriate draw solute to reduce concentration polarization, membrane fouling, and reverse solute flux. This review aims to present a thorough evaluation of the advancement of different draw solutes and membranes with their effects on FO performance. NaCl is still widely used in a large number of studies, and several general draw solutes, such as organic-based and inorganic-based, are selected based on their osmotic pressure and water solubility. The selection criteria for reusable solutes, such as heat-recovered gaseous draw, magnetic field-recovered MNPs, and electrically or thermally-responsive hydrogel are primarily based on their industrial efficiency and energy requirements. CA membranes are resistant to chlorine degradation and are hydrophilic, while TFC/TFN exhibit a high inhibition of bio-adhesion and hydrolysis. AQPs are emerging membranes, due to proteins with complete retention capacity. Moreover, the development of the hybrid system combining FO with other energy or water treatment technologies is crucial to the sustainability of FO.

Details

Title
A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes
Author
Xu, Yang; Zhu, Yingying  VIAFID ORCID Logo  ; Chen, Zhen; Zhu, Jinyuan; Chen, Geng
First page
8215
Publication year
2022
Publication date
2022
Publisher
MDPI AG
ISSN
1661-7827
e-ISSN
1660-4601
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686102707
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.