Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Root anchoring provides nonnegligible assistance to prevent soil erosion and stabilize slopes. The anchoring ability of plants suffers a tremendous impact from the soil conditions and the root characteristics. To reveal the root reinforcement effect, a group of pullout tests was conducted on five different tree root systems (Pinus tabulaeformis, Betula platyphylla, Larix gmelinii, Quercus mongolica, and Ulmus pumila) with different soil moisture contents and soil dry weights. The results indicate that the root property (species, diameter, and tensile strength) and soil condition (water content 9.72%, 12.72%, 15.72%, 18.72%, and dry weight 1.32 g/cm3, 1.42 g/cm3, 1.52 g/cm3) had a significant effect on the anchoring effect of the soil. The anchoring effect is more obvious for the roots with a larger diameter and higher tensile strength. With the increase in the soil water content and the dry weight, the root system is more prone to failure but the root anchoring effect of soil with an optimum soil water content performs the best. Among the five different tree species, Pinus tabulaeformis roots were the least effective in anchoring the soil and Betula platyphylla roots performed the best.

Details

Title
Effects of Soil Properties and Tree Species on Root–Soil Anchorage Characteristics
Author
Liu, Shusen 1   VIAFID ORCID Logo  ; Ji, Xiaodong 2 ; Zhang, Xiao 1   VIAFID ORCID Logo 

 Department of Civil Engineering, Beijing Forestry University, Beijing 100083, China; [email protected] (S.L.); [email protected] (X.Z.) 
 Department of Civil Engineering, Beijing Forestry University, Beijing 100083, China; [email protected] (S.L.); [email protected] (X.Z.); Key Laboratory of State Forestry Administration on Soil and Water Conservation, Beijing Forestry University, Beijing 100083, China 
First page
7770
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20711050
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686160173
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.