Full Text

Turn on search term navigation

© 2022 Murindahabi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

For effective sampling of mosquitoes in malaria surveillance programmes, it is essential to include attractive cues in traps. With the aim of implementing a citizen science project on malaria vectors in rural Rwanda, a handmade plastic bottle trap was designed and tested in the field to determine its effectiveness in capturing adult Anopheles gambiae sensu lato, the main malaria vector, and other mosquito species. Carbon dioxide (CO2) and light were used as attractive cues. CO2 was produced by inoculating sugar with yeast and water. Light was emitted from a torch by light-emitting diodes (LEDs). Under field conditions in rural Rwanda, three handmade trap designs were compared to Centers for Disease Control and Prevention miniature light traps (CDC-LT) in houses. The trap baited with yeast produced CO2 and light caught the highest number of mosquitoes compared to the traps baited with light alone or CO2 alone. The number of An. gambiae s.l. in the handmade trap with light and CO2 was approximately 9–10% of the number caught with a CDC light trap. This suggests that about 10 volunteers with a handmade trap could capture a similar-sized sample of An. gambiae as one CDC-LT would collect. Based on these findings, the handmade plastic bottle trap baited with sugar fermenting yeast and light represents an option for inclusion in mosquito surveillance activities in a citizen science context.

Details

Title
A handmade trap for malaria mosquito surveillance by citizens in Rwanda
Author
Murindahabi, Marilyn M; Takken, Willem  VIAFID ORCID Logo  ; Hakizimana, Emmanuel; Arnold J. H. van Vliet  VIAFID ORCID Logo  ; Poortvliet, P Marijn; Mutesa, Leon; Koenraadt, Constantianus J M  VIAFID ORCID Logo 
First page
e0266714
Section
Research Article
Publication year
2022
Publication date
May 2022
Publisher
Public Library of Science
e-ISSN
19326203
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686245685
Copyright
© 2022 Murindahabi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.