Abstract

Transition-metal dichalcogenides intercalated with 3d-transition metals within the van der Waals (vdW) gaps have been the focus of intense investigations owing to their fascinating structural and magnetic properties. At certain concentrations the intercalated atoms form ordered superstructures that exhibit ferromagnetic or anti-ferromagnetic ordering. Here we show that the self-intercalated compound Cr1+δTe2 with δ ≈ 0.3 exhibits a new, so far unseen, three-dimensionally ordered (2×2×2) superstructure. Furthermore, high resolution X-ray diffraction reveals that there is an asymmetric occupation of the two inequivalent vdW gaps in the unit cell. The structure thus lacks inversion symmetry, which, thereby, allows for chiral non-collinear magnetic nanostructures. Indeed, Néel-type skyrmions are directly observed using Lorentz transmission electron microscopy. The skyrmions are stable within the accessible temperature range (100–200 K) as well as in zero magnetic field. The diameter of the Néel skyrmions increases with lamella thickness and varies with applied magnetic field, indicating the role of long-range dipole fields. Our studies show that self-intercalation in vdW materials is a novel route to the formation of synthetic non-collinear spin textures.

Here, Saha et al. show that self-intercalation of e2Cr atoms in CrTe2 create an asymmetry in the number of atoms intercalated in the van der Waals gaps between the layers of CrTe2. This inversion symmetry breaking leads to non-collinear spin-textures and Néel-type magnetic skyrmions over a wide temperature range.

Details

Title
Observation of Néel-type skyrmions in acentric self-intercalated Cr1+δTe2
Author
Saha, Rana 1   VIAFID ORCID Logo  ; Meyerheim, Holger L. 1 ; Göbel, Börge 2   VIAFID ORCID Logo  ; Hazra, Binoy Krishna 1   VIAFID ORCID Logo  ; Deniz, Hakan 1 ; Mohseni, Katayoon 1 ; Antonov, Victor 3 ; Ernst, Arthur 4   VIAFID ORCID Logo  ; Knyazev, Dmitry 1 ; Bedoya-Pinto, Amilcar 5   VIAFID ORCID Logo  ; Mertig, Ingrid 2 ; Parkin, Stuart S. P. 1   VIAFID ORCID Logo 

 Max Planck Institute of Microstructure Physics, Halle (Saale), Germany (GRID:grid.450270.4) (ISNI:0000 0004 0491 5558) 
 Martin Luther University, Halle-Wittenberg, Institute of Physics, Halle (Saale), Germany (GRID:grid.9018.0) (ISNI:0000 0001 0679 2801) 
 National Academy of Science of Ukraine, G. V. Kurdyumov Institute for Metal Physics, Kiev, Ukraine (GRID:grid.418751.e) (ISNI:0000 0004 0385 8977) 
 Max Planck Institute of Microstructure Physics, Halle (Saale), Germany (GRID:grid.450270.4) (ISNI:0000 0004 0491 5558); Johannes Kepler University Linz, Institute for Theoretical Physics, Linz, Austria (GRID:grid.9970.7) (ISNI:0000 0001 1941 5140) 
 Max Planck Institute of Microstructure Physics, Halle (Saale), Germany (GRID:grid.450270.4) (ISNI:0000 0004 0491 5558); Universidad de Valencia, Instituto de Ciencia Molecular, Paterna, Spain (GRID:grid.5338.d) (ISNI:0000 0001 2173 938X) 
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2686426448
Copyright
© The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.