It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Likelihood estimates of extreme winds, including those from tropical cyclones (TCs) at certain locations are used to inform wind load standards for structural design. Here, wind speed average recurrence intervals (ARIs) determined from TC climate data dating back to the 1970s in two quantile–quantile adjusted reanalysis datasets (ERA5 and BARRA [1990]), and best-track observations for context, were compared with Standardized ARIs (AS/NZS) across seven tropical and two subtropical Australian inland coastal regions. The novelty of this work lies in determining TC-wind speed ARIs from a range of datasets that are not typically used to evaluate this metric. Inherent differences between the data used to determine the Standard ARIs (large sample size allow for larger extrapolations; GEV function) and TC data ARIs (smaller sample size and less certain data; the more asymptotic Lognormal/Weibull functions are used) led to the use of different extreme value functions. Results indicated that although these are two distinct ways of determining design wind speeds, when they are considered equivalent, there was a moderate reproduction of the ARI curves with respect to the Standard in both reanalysis datasets, suggesting that similar analyses using climate model products can provide useful information on these types of metrics with some caveats. Trends in TC wind strength affecting coastal Australia were also analyzed, indicating a potential slight downtrend in tropical West coast TC wind strength and slight uptrend for tropical East coast TC wind strength, noting considerable uncertainty given the short time period and limitations of data quality including over longer time periods. Such trends are not only limited to the relationship between TC intensity and anthropogenic warming, but also to regional changes in TC frequency and track direction. This could lead to significant trends emerging in regional Australian TC wind gust strength before several decades of warming have occurred. It is hoped that climate models can provide both longer-term and a more homogenous base for these types of evaluations and subsequent projections with respect to climate change simulations.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Bureau of Meteorology, Melbourne, Australia (GRID:grid.1527.1) (ISNI:000000011086859X)
2 CSIRO Oceans and Atmosphere, Aspendale, Australia (GRID:grid.492990.f) (ISNI:0000 0004 0402 7163)
3 Federation University, School of Engineering, IT and Physical Sciences, Ballarat, Australia (GRID:grid.1040.5) (ISNI:0000 0001 1091 4859)