Full text

Turn on search term navigation

Copyright © 2022 Xiao Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/

Abstract

In order to solve the defects of traditional text classification in digital library, the author proposes a method based on deep learning in the field of big data and artificial intelligence, which is applied to the digital library information integration system. On the basis of systematically sorting out the traditional text classification of digital library of this method, this paper proposes a digital library text classification model based on deep learning and uses the word vector method to represent text features, the convolutional neural network in the deep learning model is used to extract the essential features of text information, and experimental verification is carried out. Experimental results show that deep learning-based text classification model can effectively improve the accuracy (average 94.8%) and recall (average 94.5%) of text classification in digital libraries; compared with the traditional text classification method, the text classification method based on deep learning improves the average F1 value by about 11.6%. Conclusion. This method can not only improve the intelligence of the internal business of the digital library, but also improve the efficiency and quality of the information service of the digital library.

Details

Title
Digital Library Information Integration System Based on Big Data and Deep Learning
Author
Lin, Xiao 1   VIAFID ORCID Logo  ; Zhang, Ying 1 ; Wang, Jiangong 1 

 The Minjiang University Library, Fuzhou, Fujian 350000, China 
Editor
C Venkatesan
Publication year
2022
Publication date
2022
Publisher
John Wiley & Sons, Inc.
ISSN
1687725X
e-ISSN
16877268
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2687537713
Copyright
Copyright © 2022 Xiao Lin et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. https://creativecommons.org/licenses/by/4.0/