Abstract

Message RNA poly(A) tails are vital for their function and regulation. However, the full-length sequence of mRNA isoforms with their poly(A) tails remains undetermined. Here, we develop a method at single-cell level sensitivity that enables quantification of poly(A) tails along with the full-length cDNA while reading non-adenosine residues within poly(A) tails precisely, which we name poly(A) inclusive RNA isoform sequencing (PAIso−seq). Using this method, we can quantify isoform specific poly(A) tail length. More interestingly, we find that 17% of the mRNAs harbor non-A residues within the body of poly(A) tails in mouse GV oocytes. We show that PAIso−seq is sensitive enough to analyze single GV oocytes. These findings will not only provide an accurate and sensitive tool in studying poly(A) tails, but also open a door for the function and regulation of non-adenosine modifications within the body of poly(A) tails.

The poly(A) tails on mRNA are vital for their function but it is difficult to map full-length sequences of mRNA isoforms with the entire poly(A) tails. Here the authors develop PAIso−seq which can measure isoform specific poly(A) tail length and base composition at single-cell sensitivity.

Details

Title
Poly(A) inclusive RNA isoform sequencing (PAIso−seq) reveals wide-spread non-adenosine residues within RNA poly(A) tails
Author
Liu, Yusheng 1 ; Nie, Hu 2   VIAFID ORCID Logo  ; Liu, Hongxiang 1 ; Lu, Falong 3   VIAFID ORCID Logo 

 Chinese Academy of Sciences, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
 Chinese Academy of Sciences, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419) 
 Chinese Academy of Sciences, State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309); University of Chinese Academy of Sciences, Beijing, China (GRID:grid.410726.6) (ISNI:0000 0004 1797 8419); Chinese Academy of Sciences, The Innovative Academy of Seed Design, Beijing, China (GRID:grid.9227.e) (ISNI:0000000119573309) 
Publication year
2019
Publication date
2019
Publisher
Nature Publishing Group
e-ISSN
20411723
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2688286811
Copyright
© The Author(s) 2019. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.