It appears you don't have support to open PDFs in this web browser. To view this file, Open with your PDF reader
Abstract
Aims
Long non‐coding RNA HOXA11‐AS participated in heart disease. In this study, we aim to evaluate the potential roles of HOXA11‐AS in atherosclerosis and its underlying mechanisms.
Methods and results
The expression levels of HOXA11‐AS in ox‐LDL‐treated HUVECs and arch tissues of high‐fat diet‐fed ApoE−/− mice (n = 10) were assessed by qRT‐PCR. The effects of HOXA11‐AS knockdown on the development of atherosclerosis were evaluated using in vitro and in vivo models. Luciferase reporter and RNA immunoprecipitation (RIP) assays verified the potential relationships between HOXA11‐AS or ROCK1 and miR‐515‐5p. The interactive roles between HOXA11‐AS and miR‐515‐5p and between miR‐515‐5p and ROCK1 were further characterized in ox‐LDL‐treated HUVECs. Our data showed that HOXA11‐AS was significantly up‐regulated (P < 0.001), whereas miR‐515‐5p was dramatically down‐regulated in AS mice tissues (P < 0.001) and ox‐LDL‐treated HUVECs (P < 0.01). Ox‐LDL could induce endothelial injuries by inhibiting cell proliferation (P < 0.001) and SOD synthesis (P < 0.001), promoting apoptosis (P < 0.01), ROS (P < 0.001), and MDA production (P < 0.001), increasing Bax (P < 0.001) and cleaved Caspase‐3 (P < 0.001), and decreasing Bcl‐2 (P < 0.001) and phosphorylated eNOS (P < 0.01). HOXA11‐AS knockdown attenuated endothelial injuries via increasing eNOS phosphorylation. Luciferase assay and RIP results confirmed that miR‐515‐5p is directly bound to HOXA11‐AS and ROCK1. HOXA11‐AS promoted ox‐LDL‐induced HUVECs injury by directly inhibiting miR‐515‐5p from increasing ROCK1 expression and subsequently decreasing the expression and phosphorylation of eNOS. MiR‐515‐5p mimics could partially reverse the effects of HOXA11‐AS knockdown.
Conclusions
HOXA11‐AS contributed to atherosclerotic injuries by directly regulating the miR‐515‐5p/ROCK1 axis. This study provided new evidence that HOXA11‐AS might be a candidate for atherosclerosis therapy.
You have requested "on-the-fly" machine translation of selected content from our databases. This functionality is provided solely for your convenience and is in no way intended to replace human translation. Show full disclaimer
Neither ProQuest nor its licensors make any representations or warranties with respect to the translations. The translations are automatically generated "AS IS" and "AS AVAILABLE" and are not retained in our systems. PROQUEST AND ITS LICENSORS SPECIFICALLY DISCLAIM ANY AND ALL EXPRESS OR IMPLIED WARRANTIES, INCLUDING WITHOUT LIMITATION, ANY WARRANTIES FOR AVAILABILITY, ACCURACY, TIMELINESS, COMPLETENESS, NON-INFRINGMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Your use of the translations is subject to all use restrictions contained in your Electronic Products License Agreement and by using the translation functionality you agree to forgo any and all claims against ProQuest or its licensors for your use of the translation functionality and any output derived there from. Hide full disclaimer
Details
1 Department of Cardiology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
2 Department of Geriatrics, Chongqing People's Hospital, Chongqing, China
3 Department of Cardiology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, China
4 Houston Methodist Research Institute, Center for Cardiovascular Regeneration, Houston, TX, USA





