Abstract

Burn wound is usually associated by antibiotic-resistant Pseudomonas aeruginosa infection that worsens and complicates its management. An effective approach is to use natural antibiotics such as cinnamon oil as a powerful alternative. This study aims to investigate topical nanostructured lipid carrier (NLC) gel loaded cinnamon oil for Pseudomonas aeruginosa wound infection. A 24 full factorial design was performed to optimize the formulation with particle size 108.48 ± 6.35 nm, zeta potential −37.36 ± 4.01 mV, and EE% 95.39 ± 0.82%. FTIR analysis revealed no excipient interaction. Poloxamer 407 in a concentration 20% w/w NLC gel was prepared for topical application. Drug release exhibited an initial burst release in the first five hours, followed by a slow, sustained release of up to five days. NLC-cinnamon gel has a significant ability to control the drug release with the lowest minimum inhibitory concentration again P. aeruginosa compared to other formulations (p < .05). In vivo study also showed NLC-cinnamon gel effectively healed the infected burned wound after a six-day treatment course with better antibacterial efficacy in burned animal models. Histological examination ensured the tolerability of NLC-cinnamon gel. The results suggest that nanoparticle-based cinnamon oil gel is a promising natural product against antibiotic-resistant strains of P. aeruginosa in wound infection.

Details

Title
Nanophyto-gel against multi-drug resistant Pseudomonas aeruginosa burn wound infection
Author
Wen, Ming Ming 1 ; Abdelwahab, Ibrahim A 2 ; Aly, Rania G 3 ; El-Zahaby, Sally A 1 

 Department of Pharmaceutics & Pharmaceutical Technology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt 
 Department of Microbiology and Immunology, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt 
 Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt 
Pages
463-477
Publication year
2021
Publication date
Dec 2021
Publisher
Taylor & Francis Ltd.
ISSN
10717544
e-ISSN
15210464
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2691141940
Copyright
© 2021 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group. This work is licensed under the Creative Commons Attribution License http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.