Abstract

Joint species distribution models have become ubiquitous for studying species-environment relationships and dependence among species. Accounting for community structure often improves predictive power, but can also affect inference on species-environment relationships. Specifically, some parameterizations of joint species distribution models allow interspecies dependence and environmental effects to explain the same sources of variability in species distributions, a phenomenon we call community confounding. We present a method for measuring community confounding and show how to orthogonalize the environmental and random species effects in suite of joint species distribution models. In a simulation study, we show that community confounding can lead to computational difficulties and that orthogonalizing the environmental and random species effects can alleviate these difficulties. We also discuss the inferential implications of community confounding and orthogonalizing the environmental and random species effects in a case study of mammalian responses to the Colorado bark beetle epidemic in the subalpine forest by comparing the outputs from occupancy models that treat species independently or account for interspecies dependence. We illustrate how joint species distribution models that restrict the random species effects to be orthogonal to the fixed effects can have computational benefits and still recover the inference provided by an unrestricted joint species distribution model.

Details

Title
Community confounding in joint species distribution models
Author
Van Ee, Justin J. 1 ; Ivan, Jacob S. 2 ; Hooten, Mevin B. 3 

 Colorado State University, Department of Statistics, Fort Collins, USA (GRID:grid.47894.36) (ISNI:0000 0004 1936 8083) 
 Colorado Parks and Wildlife, Fort Collins, USA (GRID:grid.478657.f) (ISNI:0000 0004 0636 8957) 
 The University of Texas at Austin, Department of Statistics and Data Sciences, Austin, USA (GRID:grid.89336.37) (ISNI:0000 0004 1936 9924) 
Pages
12235
Publication year
2022
Publication date
2022
Publisher
Nature Publishing Group
e-ISSN
20452322
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2691268304
Copyright
© The Author(s) 2022. corrected publication 2023. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.