Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Conventional aircraft use discrete flight control surfaces to maneuver during flight. The gaps and discontinuities of these control surfaces generate drag, which degrades aerodynamic and power efficiencies. Morphing technology aims to replace conventional wings with advanced wings that can change their shape to control the aircraft with the minimum possible induced drag. This paper presents MataMorph-3, a fully morphing unmanned aerial vehicle (UAV) with camber-morphing wings and tail stabilizers. Although previous research has presented successful designs for camber-morphing wing core mechanisms, skin designs suffered from wrinkling, warping, or sagging problems that result in reduced reliability and aerodynamic efficiency. The wing and tail stabilizers of MataMorph-3 feature hybrid ribs with solid leading-edge sections that house servomotors, and compliant trailing-edge sections with integrated flexible ribbons that are connected to the servomotors to camber-morph the ribs. Thin laminated carbon fiber composite skin slides smoothly over the compliant rib sections upon morphing, guided by innovative trailing-edge sliders and skin-supporting linkage mechanisms strategically located between the ribs. Sample prototypes were built and tested to show the effectiveness of the proposed design solutions in enabling smooth camber-morphing. The proposed design provides a better alternative to stretchable skins in morphing airplane designs through the concept of skin sliding.

Details

Title
Design and Analysis of MataMorph-3: A Fully Morphing UAV with Camber-Morphing Wings and Tail Stabilizers
Author
Bishay, Peter L  VIAFID ORCID Logo  ; Kok, James S; Ferrusquilla, Luis J; Espinoza, Brian M; Heness, Andrew; Buendia, Antonio; Zadoorian, Sevada; Lacson, Paul; Ortiz, Jonathan D; Ruiki Basilio; Olvera, Daniel
First page
382
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
22264310
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693850139
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.