Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

To improve the production efficiency and reduce the labor cost of seedling operations, cabbage was selected as the research subject, and a novel approach based on the attention mechanism combining the deep convolutional neural network (DCNN) and long short-term memory (LSTM) is proposed. First, the cabbage growth data and environmental monitoring data were normalized, and input samples were obtained by sliding the time window. Then, the DCNN and the LSTM were used to extract the spatial feature information and temporal correlation of the samples, respectively. At the same time, the attention mechanism was used to set the weight coefficients of different feature information and highlight the role of the main features of the sample in the model, thereby improving the prediction accuracy. By analyzing the experimental data collected by the Shandong Seedling Plant, the DCNN-LSTM method based on the proposed attention mechanism achieved good prediction results, providing experience for the engineering application of decision-making regarding seedling transplanting time. The experimental data showed that the mean absolute error, root-mean-square error, mean absolute percentage error, and symmetric mean absolute percentage error of the prediction results of this method were 0.356, 0.507, 0.157, and 0.082, respectively. Compared with the CNN, LSTM, LSTM-Attention and CNN-LSTM models, this model showed higher prediction accuracy.

Details

Title
A Prediction Method of Seedling Transplanting Time with DCNN-LSTM Based on the Attention Mechanism
Author
Zhu, Huaji 1 ; Liu, Chang 1 ; Wu, Huarui 1 

 Research Center of Information Technology, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; [email protected] (H.Z.); [email protected] (C.L.); National Engineering Research Center for Information Technology in Agriculture, Beijing 100097, China; Key Laboratory of Digital Village Technology, Ministry of Agriculture and Rural Affairs, Beijing 100125, China 
First page
1504
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734395
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693869071
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.