Full Text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

In this paper, a novel typhoon intensity classification and estimation network (TICAENet) is constructed to recognize typhoon intensity. The TICAENet model is based on the LeNet-5 model, which uses weight sharing to reduce the number of training parameters, and the VGG16 model, which replaces a large convolution kernel with multiple small kernels to improve feature extraction. Satellite cloud images of typhoons over the Northwest Pacific Ocean and the South China Sea from 1995–2020 are taken as samples. The results show that the classification accuracy of this model is 10.57% higher than that of the LeNet-5 model; the classification accuracy of the TICAENet model is 97.12%, with a classification precision of 97.00% for tropical storms, severe tropical storms and super typhoons. The mean absolute error (MAE) and root mean square error (RMSE) of the samples estimation in 2019 are 4.78 m/s and 6.11 m/s, and the estimation accuracy are 18.98% and 20.65% higher than that of the statistical method, respectively. Additionally, the model takes less memory and runs faster due to the weight sharing and multiple small kernels. The results show that the proposed model performs better than other methods. In general, the proposed model can be used to accurately classify typhoon intensity and estimate the maximum wind speed by extracting features from geostationary meteorological satellite images.

Details

Title
Classification and Estimation of Typhoon Intensity from Geostationary Meteorological Satellite Images Based on Deep Learning
Author
Jiang, Shuailong 1 ; Tao, Lijun 2 

 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; [email protected]; University of Chinese Academy of Sciences, Beijing 100049, China 
 State Key Laboratory of Tropical Oceanography, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; [email protected]; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China 
First page
1113
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693888211
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.