Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Harbin, located in northeast China (NEC), has obvious monsoon climate characteristics due to the influence of its geographical environment. Under the control of the polar continental air mass, winter in Harbin is exceedingly cold and long, with the frequent invasion of the cold and dry air from the north. Because of its intensely cold climate in winter, Harbin has created a local form of tourism with its own characteristics: the snow and ice landscape attracts a large number of tourists. Therefore, the anomalies of air temperature and precipitation in winter have an important impact on the livelihood of the local people and economy. In the winter of 2018/2019, the ice and snow tourism in Harbin was harshly affected by the extreme weather, and the direct cause is the anomalies of atmospheric circulation. There is a center of strong positive geopotential height anomalies over east China, which favors the movement of warm air northwards to the NEC, resulting in warmer-than-normal air temperature. Anomalous precipitation is largely controlled by the anomalies of local water vapor and air temperature. The aim of this study was to determine whether the warmer-than-normal temperature, which made the atmosphere more resistant to saturation, was the primary cause of the reduced snowfall. The relative importance of water vapor and air temperature anomalies to the anomalous precipitation was compared. The results suggest that the warmer-than-normal temperature affected all levels, but its impact on the near-surface level was greater. At the middle and upper levels (above 850 hPa), in addition to the warmer-than-normal temperature, the amount of water vapor was less than normal. These conditions both reduced the amount of snow; however, by comparison, the dryness of the air contributed more significantly.

Details

Title
The Ice-and-Snow Tourism in Harbin Met Its Waterloo: Analysis of the Causes of the Warm Winter with Reduced Snowfall in 2018/2019
Author
Yuan, Dian 1   VIAFID ORCID Logo  ; Er Lu 1 ; Dai, Wei 2 ; Chao, Qingchen 3 ; Wang, Hui 4 ; Li, Shuling 5 

 Key Laboratory of Meteorological Disaster, Ministry of Education (KLME), Joint International Research Laboratory of Climate and Environment Change (ILCEC), Collaborative Innovation Center on Forecast and Evaluation of Meteorological Disasters (CIC-FEMD), Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 
 School of Environmental Science and Engineering, Nanjing University of Information Science and Technology, Nanjing 210044, China; [email protected] 
 China Meteorological Administration Climate Studies Key Laboratory, National Climate Center, China Meteorological Administration, Beijing 100081, China; [email protected] 
 NOAA/NWS/NCEP/Climate Prediction Center, College Park, MD 20740, USA; [email protected] 
 Harbin Meteorological Bureau, Harbin 150028, China; [email protected] 
First page
1091
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20734433
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693898178
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.