Full text

Turn on search term navigation

© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.

Abstract

Modern Linux operating systems are being used in a wide range of fields, from small IoT embedded devices to supercomputers. However, most machines use the default Linux scheduler parameters implemented for general-purpose environments. The problem is that the Linux scheduler cannot utilize the features of the various hardware and software environments, and it is therefore, difficult to achieve optimal performance in the machines. In this paper, we propose STUN, an automatic scheduler optimization framework. STUN modifies the five scheduling policies of the Linux kernel and 10 parameters automatically to optimize for each workload environment. STUN decreases the training time and enhances the efficiency through a filtering mechanism and training reward algorithms. Using STUN, users can optimize the performance of their machines at the OS scheduler level without manual control of the scheduler. STUN showed an execution time and improved FPS of 18.3% and 22.4% on a face detection workload, respectively. In addition, STUN showed 26.97%, 54.42%, and 256.13% performance improvements for microbenchmarks with 4, 44, and 120 cores for each.

Details

Title
STUN: Reinforcement-Learning-Based Optimization of Kernel Scheduler Parameters for Static Workload Performance
Author
Lee, Hyeonmyeong; Jung, Sungmin; Heeseung Jo  VIAFID ORCID Logo 
First page
7072
Publication year
2022
Publication date
2022
Publisher
MDPI AG
e-ISSN
20763417
Source type
Scholarly Journal
Language of publication
English
ProQuest document ID
2693933313
Copyright
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.